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ABSTRACT

Most naturally occurring data are serial in space or time. With

randomized designs, analysis which ignores the serial structure is possible.

When the ordering of the data is not at our disposal adequate models must take

specific account of serial structure and allow for error dependence, possible

non-stationarity, time trend removal, dynamic relationships between variables,

feedback between variables, and choice of dependent and independent

variables. Stochastic difference equations supply a useful class of serial

models. Some aspects of their structure are illustrated with practical

examples.
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ANATOMI oF SME TUM SIts NOELS

GBORGZ B. P. BOx

INTRODUCTION

Many classical statistical models assume that data yloy2o ".. Yn may be directly

represented by independently and identically distributed variables. Indeed, some of us

have so long been exposed to this idea, in courses, textbooks, and papers that we almost

automatically write a relation for the joint distribution of random variables y ,Y21...,yn

as

n
p(lfly2, ...,#yn

)  
R flyi()

• - "

and we almost believe it.

In particular, models are frequently employed of the form

Yu . fu 
+ eu (2)

where yu is a "dependent" (output) variables, fu is a function of "independent" (input)

variables and parameters, and eu is an error. It is then common to suppose that

(3)e u I au [)

where au.1,au,a+l,... is a sequence of random variables supposed independently and

identically distributed about zero. Throughout this paper we shall call such a sequence

'white noise".

These assumptions are, of course, sweeping ones. When they are not approximately

true, results derived from their use may be very seriously in error. Alternatively, to

take a more positive view, the explicit modeling of serial dependence can provide answers

to many important practical problems in forecasting, feedback control, the estimation of

transfer function relationships, and intervention analysis.

In these days statisticians do not ignore serial dependence, however, there is perhaps

a tendency to behave as If our subject could be divided into two pieces - one part

concerned with problems readily recognized as time series, where specific allowance is made

Sponsored by the United States Army under Contract No. DAAG29-S0-C-0041.



for serial dependence, and the other part, consisting of everything else, where models like

(1), (2), and (3) may be safely employed. It seems doubtful, however, whether any such

distinction can be made.

UBIQUITY OF SERIAL DZMDXNCZ, WON-STATIOMARITY, AND NON-H(XOGENEITY

The attractive feature of Independence is its mathematical tractability, not its

direct association with familiar phenomena within our experience. The data which we

mentally process in the conduct of our daily lives is highly serially dependent not

independent. To see how important this serial nature of our experience is, imagine viewing

the 86,400 separate frames of a one hour movie film after they had been rearranged in

random order. It is indeed the serial dependence of our experience which makes it possible

to conduct our lives in a rational manner. In particular, it allows us continually to

project recent experience and so to make mental forecasts. Comparison of what is expected

in the immediate future with actual experience leads to appropriate adjustment of ideas and

behavior.

Serial Dependence in Agricultural Field Trials

Although the normal linear model with independently and identically distributed errors

is often used as a framework for the analysis of agricultural field trials it is doubtful

for example whether R. A. Fisher would place any faith in such an analysis unless the

design had been randomized. Only then, he asserted, could such a set-up supply an

approximation to the randomization analysis. There are many reasons for randomization but

certainly the need to cope with the serial dependence which would be expected between

errors of adjacent plots is an important one.

The principles enunciated in R. A. Fisher's book "The Design of Experiments" are

consonant, not with a world of independent errors and homogeneous experimental material,

but with inhomogeneity and even non-stationarity. Thus the book is careful to confine

Methods for analyzing field trial data which take direct account of spatial correlation

have been discussed, for example, by Bartlett (1978).
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itself to comparative experiments -- not absolute experiments and the estimates of desired

contrasts are made from randomized comparisons within blocks of size eight or less. Study

of uniformity data such as that of Wiebe (1935), Figure 1, shows the wisdom of such

principles.

Serial Dependence in Industrial Data

Evidence that non-stationary error structures are also to be expected for industrial

data is provided, for example, by the devices employed in the process industries for

feedback control. Suppose Xt  refers to the level, at time t, of an input variable that

can be manipulated to compensate for a deviation et  from some desired output target. A

form of feedback regulation commonly found effective employs a control equation having

"proportional plus integral" terms. For discrete data it is thus of the form

t
Xt = ket+kI I eu (4)

n=0

where k0  and k, would normally be of the same sign.

After differencing (4) becomes

C(Xt-X _) =e t -8e_ (5)
Ct_ t-1 et - et-1(5

-1
with C . (k +k1) e = Ck

If the control is effective then et  will be a stationary process implying that Xt

follows a non-stationary process. But Xt  is the compensation for the disturbance, which

consequently must also be non-stationary.

It is further possible to show that, if the dynamic relation between input and output

can be approximated by a first order linear difference equation, then (4) can provide

minimum mean square error control for a non-stationary disturbance zt  modeled by

zt'zt- 1 . at - Oat- 1  " (6)
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MODBLXNG S3RIAL PH3HONIOA

Randomisation is impossible when the ordering of the data in time or space is not at

our disposal. It then becomes necessary to model the special characterisitcs of the system

arising from its serial nature. These characteristics include

error dependence and possible non-stationarity

existence of time trends

dynamic relationships between variables

feedback

choice of dependent and independent variables.

In the remainder of this paper we discuss the nature of the models employed to accommodate

these characteristics. For illustration examples of fitted models are given. However, our

purpose here is only to discuss model structure, so details of the model building process

are not presented but can be found in accompanying references.

Linear Difference Ecuations

The crucial first step in showing how linear difference equations might be used in

modeling serial data was taken by Yule (1927).

A linear difference equation such as

t . Y t-1 
+ 

Wo0X t-1 
+ 

WlIX t-2 (7)

can, with suitable choices of the coefficients (8,w0,wI), represent a dynamic

relationship between an input x and an output y. Using B for a backshift operator we

can write the relation (7)

(1-6S)y t = W (9)

More generally with 8(P) and w(B) finite polynomials in B any such linear difference

equation may be written

6((y t  WlB)xt • (9)

For a stable system with the zero's of 6(8) outside the unit circle we can write (9) as a

"distributed laa" model
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Yt " 6- Xt " v(0)xt " Y " -0 v 1 2xt. 1  (10)

where v(S) is the transfer function and (v is the impulse response function of the

system. The impulse response weights v1  thus determine the nature of the linear

aggregate Ev 1xt- j  which is transferred to the output by the dynamic model.

Stochastic Difference Fnuations

Stochastic difference equation models suppose that a time series {z I can be
t

represented as a realization of the output from such a dynamic model in which the input is

white noise. Thus

*(B)z t .
8
(B)a (1

t t

where

#1 (B) I -1B-# 2B2_...# p, ( - 1-8 1B- 2 B2..._aB
q

)

are called autoregressive and moving average operators, respectively.

A model of this kind is often called an autoregressive-moving average model of order

(p,q) or an ARMA(pq) model, see for example Box and Jenkins (1976).

If the zero's of e(S) all lie outside the unit circle then we can write the model in

invertible form

at it = ( 1)z 2- r ) t Z (12)
a (B) z1z = zt t-1

where

Wr (13)
t-1 i t-1

Thus, given the model and data up to time t-1 the conditional distribution of the

2
next, but not yet available, observation zt  has mean it. 1  and variance a . It is nowa

elementary to calculate also the conditional means and variances for future observations

2, 3,...,t steps ahead and so provide a basis for forecasting.

As a specific example consider the process (6) which can be written

(1-B)zt " 41-leB)a t  (14)

Then

a N(I-B) 2 2
= e - {1 - (1-0)(1+OB+ B +. )}i t  z i -i 15)at -@ t t" t t-t-1



and

-t 1-8 6z 1  ( C16)i-I

Thus, for the particular model (14), z t_ is an exponentially weighted moving average

(ewa) of past data ending at the t-l
t  

observation. The conditional distribution of

2
z has this ewma for its mean and has variance aa

In the model (14), *(B) = 1-B has a zero on the unit circle. By allowing #(B) in

the general model to have zero's on as well as outside but not inside the unit circle a

valuable class of models is obtained for representing non-stationary systems. Also

seasonal models of period s can often be represented by using the factorization

(#= t() (B8) 8(B) - 61(B)es (Bs)

Some of the issues are clarified if we consider the problems arising when, as

occasionally still happens, ordinary least squares is applied to the analysis of time

series data.

For first illustration we reconsider some data plotted in Figure 2 and first studied

by Coen, Goome, and Kendall (1969). These were quarterly data on

Zit: Financial Time Share Index

z2t: U. K. Car Production

z3t: Financial Times Commodity Price Index.

The original authors were interested in predicting zI using lagged values of z2

and z3  in a linear regression equation which allowed for possible deterministic linear

trends in each of the variables.

With •t  a random error, their model can be written

yt li 2+t+OIXIt+02x2t +t (17)

where

t t 2,t- 6  , 2t 3,t-7

Denoting fitted values by yt, X1 t, and x2t, after estimation of a supposed linear time

trend in each variable, this model is of the required postulated form

Y-yt 6 
1 (x 1IxIt) + 82 (x2 -x2t) t (1)
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Column (a) of Table 1 shows the results when equation (17), or equivalently (18), is fitted

by ordinary least squares. Both ;1 and 62 appear enormously significantly different

from zero leading to the conclusion that the stock price zI can usefully be predicted 6

quarters in advance from knowledge of z2 and z3.

Table I

(a) (b) (c)

Error Model et . at et . *et-1+at et-et a t = -eat_1

- 5
1 x 10 4.7(0.4) 1.8(0.9) 1.6(0.9)

x 10 - 6.1(0.5) - 1.9(1.2) - 1.2(1.2)
2
a 497 298 321

a

- 0.82(0.10) 8 - -0.06(0.15)

Table 1. Estimates of parameters with (standard error) for

the model (17)

(a) ordinary least squares

jb) with # in (19) estimated simultaneously from the data

(c) with non-stationary disturbance model (20).

Modeling Serial Dependence of Errors

A numl- of models which allowed for possible serial dependence of the errors et

were fitted by Box and Newbold (1970) using maximum likelihood.

In particular the data were consistent with a first order autoregressive model

et #e t_1 + a t  (19)

The profound differences in inference that result when # is not forced to equal zero

(ordinary least squares) but is estimated from the data simultaneously with the regression

coefficients may be appreciated from comparison of columns (a) and (b) in Table I where it

will be seen that the previous overwhelming significance of 01 and 02 now disappears.

-9-
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Of the standard assumptions that errors are N;ormally, Identically and Independently

distributed it has been the first two that have received most attention in the

literature. It is a measure of the importance of serial dependence that it would require

very dramatic departures from normality and/or identicality to influence the estimates and

their standard errors in the spectacular manner seen in the comparison of columns (a) and

(b) in Table 1.

Non-Stationarity and the Elimination of Time Trends

The autoregressive noise model et = 0.8eti + at is stationary with respect to time,

however, * = 0.82(0.10) is close to unity, for which value the model become non-

stationary. Notice also that equation (17) allows for linear dependence of all the series

on time with the evident intention of eliminating (non-stationary) time trends.

Now there is no a priori reason for believing in the reality of systematic linear

components in the three series. Indeed over longer stretches of time we should expect each

series to sometimes trend up -rds and sometimes downweards.

A non-stationary disturbance model consistent with the data is in fact of the form of

(14)

(1-P)e t . (1-p)a t  (20)

From column (c) of Table I we see that the analysis conducted with this noise model gives

results similar to those obtained with the autoregressive model. In fact, in this model

is close to zero. Thus both this non-stationary model and the autoregressive model are

pointing to a random walk structure for the error. However, let us continue to consider

the more general situation where the noise model is of the form of (20) but 8 is not

necessarily close to zero.

We are most familiar with the behavior and implications of models for which the errors

follow a white noise process and ordinary least squares is appropriate. A useful device in

studying models with a more complex noise structure, therefore, is to transform the model

to the familiar white noise form.
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From (15)

a t - Wet . et-et I  (21)

where et I is an exponential moving average of the e's terminating at t-1 with

smoothing constant 6.

Operating on both sides of equation (17) with w(B) we now obtain

- B.+B(x t-x lt_) + B 2(x 2t-x2,t ) + at  (22)

where for example x1t - xl1t I is the deviation of x1t from the exponentially smoothed

value x*t 1 . This equation (22) may now be compared with (18).

We seen then that the fitting of model (17) with non-stationary noise (20) is

equivalent to fitting the model (22) by least ordinary squares while allowing for

elimination of stochastic trends by exponential smoothing. More generally the model noise

structure would indicate precisely what kind of smoothinq should be used for elimination of

stochastic trend.

Dynamic Relationships Among Variables

Suppose, in the share price data, contributions to zlt from z2t and z3t could be

approximated by distributed lag models

xlt = v12 (b)z 2t x2t - v1 3 (B)z 3t

Then the lag structure assumed in 17a) is such that the impulse response functions

[v 12,j and {v 13, } are zero everywhere except at lags j - 6 and j = 7,

respectively, where they take values of unity.

The less restrictive difference equation models of the form of (10) (for example,

v12 (B) = W 12(B)6 12C)) are clearly more likely to provide adequate dynamic models.

Notice that so far as the structure of the resulting models is concerned, after

transforming the errors to white noise as before we should have, correspondinq to (22):

zl-z lt- 1 = ;+v1 2 (B)(z 2t-z 2,t1) + v 13) z 3t-z3,t_ ) + a t  (23)

The contributions to the response z1 and z 2 and Z3 would thus be modeled as linear

agreqates of the deviations from exponentially smoothed values with weights supplied by the

impulse response functions of the dynamic systems.
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TrIMansfer Punction Podels

Zn the particular case of the share index data, analysis fails to show any significant

transfer. However, transfer function model@ of this kind have frequently been effective.

For illustration Figure 3 shows hourly data from the Twin Rivers study of house insulation

(Pollack and Shoemaker 1978s Socolow 1978). The estimated model

0.12+0 1420+0.40B
2  

(1+0.268)1-0.86 24

t 1-0.33B 3 t 
+  ( . 2)(1 84 a t (24)

allows for a highly non-stationary seasonal disturbance associated with the daily change in

temperature. After this has been taken account of the transfer function relation between

outside temperature and attic temperature can be quite accurately estimated.

Particularly in engineering and environmental problems, transfer function models, such

as the above, have often proved valuable. Also the transfer function set-up with one or

more indicator variables has provided a useful model for intervention studies (see for

example Box and Tiao (1975)). For some economic and business data, however, results from

transfer function analysis between an output Yt and input xitX2t,.... has sometimes

been disappointing. In particular some selected xt  that seemed a priori to be a

promising predictive input has in practice provided only a weak or sometimes a non-

detectible relationship. In this connection, however, it must be remembered that denoting

the output by yt an invertible time series model of the form of (11) may be written

W
Yt 1 yt-1 + at (25)

Thus this univariate time series model can employ the whole past history of y for

prediction of future values. Any useful xt  must supply information that is additional to

this.

Explanation of the model is as follows. The temperature inside the house is going through
a large daily cycle which, using a seasonal noise model, could be forecast from the
experience of previous days. The outside temperature xt  suitably filtered provides
additional current information.

-12-
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Feedback

In any case the usefulness of transfer function models of the kind considered above,

is confined to those examples where the relationship is unidirectional. In engineering

examples, when feedback occurs, its pattern is usually known from the physical nature of

the system and so it can be modeled directly (see for example Box and MacGregor (1976)).

However in business and economic systems the nature of the feedback is usually unknown. In

the share price example, for instance, the model (17) tacitly assumes the structure indi-

cated in Figure 4(a), when in fact any or all of the relations in Figure 4(b) could occur.

Multiple Time Series Models

Multiple time series models can provide, among other things, a general framework

within which all possible feedback relations between k series can occur. They thus

present possible means of discovering the feedback from the data. In particular, a class

of vector models may be employed which parallels the univariate models of Equation (11) but

with z and a now k-dimensional column vectors and E(a a') - E . The autoregressive
t t tt -a

and moving average parameters are replaced in these models by k x k matrices.

For example, a first order autoregressive, first order moving average model for k - 2

series would be of the form

( - (I-O)a t  (26)

or

zit z + 1 +a + a + aalt1122,- 1, It-1 
+  

12 2,t-1

(27)
z 2t "21z1,t-1 + 4 22z2,t-1 + a2t + e21 a ._ 1 + - 22 a2,t- 1

-14-
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In inverted form much a model may be written

- T (11) iI i (  
alJ. i1 i 

w  -i  
*J. I j z2,t- j  'iat

(29)

2t (21) X (22) +
SJi2 + i iz 21t j  a2t

in which each series can 'remember' a linear aggregate of its own past, together with a

linear aggregate from the pest of the other series.

When a multivariate model of this kind is applied to the share price data (Tiao and

Box, (1981)) a trivariate first order autoregressive-first order moving average model is

obtained. After appropriate simplication the model implies that the system is approximated

by

( - .98B)z t - aIt

(.03)

(1 - .93B)z2 - .2 + a (30)
(.04)k t (.1 2t

(.12) -

(I - *839)z 3t - 2.8 + .40(0 -
9 8 ~z I(t1) + (I1 41 Bd)a3 t

(.06) (1.1) (.23) (.03) (.2)

045 1
E - /

.
024 .085

019 .023 .13

It thus appeais that for the share data all three series behave approximately like

random walks with slightly correlated innovations. There is (weak) evidence that the share

price is a leading indicator at lag I for the commodity index. This relation, indicated in

Figure 4(c), is in the reverse direction to that assumed in Equation (17).

In general an advantage of this approach is that no prior assumptions need be made

about the feedback and dynamic interrelationships between variables and about what should

be regarded as an independent variable and what a dependent variable. Rather we can allow

the data with rather weak modeling to point to the structure.

-16-



Conclusion

The modling of serial data is important because we live in a serially dependent

world.

Considerable success has been achieved in the last SO years or so in modeling serial

dependence using stochastic dLfference equations.

much, however, remains to be done. Some important current topics aret

Parsimonious parametrixation of ultivarLate time series models (see, for example, box

and Tiao, 1975; Rminsel, 1983).

Possible value of non-linear models (see, for example, Priestley, 1978).

Treatment of discrepant observations (see, for example, Abraham and box, 1979).

-17-
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